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Abstract

Eco-routing navigation systems have become a promising application to reduce fuel consumption 
by optimizing driving routes through energy efficiency prioritization instead of solely travel time 
or distance minimization. Current studies have put limited efforts to investigating whether and 
why drivers will choose and comply with the eco route recommended by eco-routing navigation 
systems. Thus, to fill this research gap, this study developed a smartphone-based eco-routing 
navigation application (app) and collected naturalistic driving data to examine and model drivers’ 
route choices and compliance behavior when interacting with the recommended route. It was 
observed that drivers chose the eco-routing option with the most energy-saving feature in 
approximately 78.6% of all the selected routes in this study. To further explore the impacting 
factors on the eco-routing choice, mixed model analyses were conducted. The results showed that 
drivers were more likely to select the eco-route when this trip had shorter distance and higher per 
mile gas consumption. It was also found that giving priority to recommend the eco-route could 
guide drivers to choose the eco-route. Since drivers’ route choices belonged to the multi-label 
problem, this study applied a Multi-label random forests (MLRF) model to predict route choice 
behavior. In this model, independent variables were derived from three aspects, including driver 
characteristics, subjective data, and route information. The overall accuracy and AUC (the area 
under the receiver operating characteristic curve) of this MLRF model were 88.3% and 0.86 
respectively. Overall, the average proportion that participants complied with the recommended 
route while driving was 56.7%. Mixed model analyses found that when drivers chose the eco or 
fast routes, they were more likely to fully follow the recommended route. Compared with driving 
alone or with only one household passenger, drivers preferred to comply with the recommended 
route when there were three or more household passengers. The findings of this study can help to 
understand drivers’ decision making in route planning and therefore to improve eco-routing 
navigation system designs, which will be beneficial to the eco-friendly transportation system.

Keywords: Eco-routing navigation system; Route choice; Route compliance; Multi-label random 
forests; Mixed model analysis
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1. Introduction

The transportation sector, as one of the most significant contributors to greenhouse gas 
emissions, is greatly responsible for the growing environmental problems, such as the fossil fuel 
shortage crisis, global climate change, air pollution, and so on (Aziz and Ukkusuri, 2014; Salvi 
and Subramanian, 2015). It has been reported that the transportation sector made up the largest 
proportion (approximately 29%) of the total U.S. greenhouse gas emissions in 2017, of which 41% 
was represented by passenger cars (EPA, 2019). With the rapid development of intelligent 
transportation systems and data, the eco-routing navigation system becomes a potential application 
to reduce fuel consumption, which optimizes the route based on the highest energy efficiency 
instead of minimizing the travel time or distance (Ahn and Rakha, 2013; Wang et al., 2019; Zhao 
et al., 2019).  The most energy-economic route (hereinafter called “the eco route”) is not always 
consistent with the fastest or the shortest route, due to higher travel speed or traffic congestion 
(Zeng et al., 2017; Boriboonsomsin and Barth, 2014). If the eco route is adopted by drivers to take 
the place of traditional route choices (i.e., the fastest or shortest route), a 4% ~ 20% decrease in 
energy consumption can be achieved (Ahn and Rakha, 2008).

Currently, eco-routing models designed for advanced navigation systems have been proposed 
and improved, as more influencing factors on vehicle fuel consumption have been investigated 
and optimized. For example, hilly routes consumed 15% to 20% more fuel than flat routes 
(Boriboonsomsin and Barth, 2009), while arterial routes yielded approximately 22% better fuel 
economy compared to highway routes (Fiori et al., 2018).  Traffic congestion showed significantly 
negative effects on fuel economy, and an increase in fuel consumption ranged from 20% ~ 40% 
based on different levels of congestion (Sivak and Schoettle, 2012; Lois et al., 2019). An embedded 
data fusion method was employed to involve both historical and real-time traffic information into 
an eco-routing navigation system, where consumption-related factors like vehicle type, roadway 
characteristics, and traffic conditions were taken into consideration (Boriboonsomsin et al., 2012). 
A calculation model of fuel consumption and greenhouse gas emissions was established by Nie 
and Li (2013), and their study found that consumption rates were associated with vehicles’ physical 
parameters (e.g. weight and engine displacement) and operational properties (e.g. acceleration, 
turning movements, and idling at intersections). To achieve the real-time and vehicle-specific route 
recommendation, a dynamic eco-routing model was presented and tested in a micro-simulation 
framework, in which several energy cost functions were combined to capture microscopic transient 
behavior, including acceleration, driving speed, and road grade variations within each road 
segment (Wang et al., 2019).

Besides traditional route recommendations such as the shortest or fastest routes, eco-routing 
navigation systems offer drivers an extra option, the eco route, but a new question arises: when 
faced with different routing options, which one driver would prefer to choose? Route choice 
models can provide a better understanding of drivers’ route choice preferences and their 
influencing factors; however, current route models mostly focus on traditional routes without 
considering the eco one. Drivers’ route choice was affected by their experience and habits, and 
experienced drivers appeared to be more likely to choose the route with less travel time (Prato and 
Bekhor, 2007). Personalities also had effects on route choices, for example, some drivers would 
like to select the longer but more scenic route to enjoy the driving time, while other drivers who 
were interested in driving also preferred a longer route (Handy et al., 2005).  A reinforced learning-
based model was applied to examine the combined effects of real-time information and experience 
on drivers’ route choice behavior (Ben-Elia and Shiftan, 2010). The results showed that compared 
with non-informed drivers, informed drivers could learn faster from their personal experience, 
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exhibited more risk-seeking behavior, and were more sensitive to the change of travel time. A 
mixed logistic regression model was used to investigate heterogeneity in route choice behavior (Li 
et al., 2016). This study found that male and younger drivers cared more about the number of 
intersections in their selected routes, and if drivers were familiar with the origin-destination, they 
would be more likely to choose the fastest route. According to the results of a survey study, travel 
time was the most important factor when drivers chose the route (Papinski et al., 2009), and the 
significant effect of travel time on route choice behavior was also confirmed in another study 
(Shakeel et al., 2016).

With the development of advanced navigation systems, the trade-off between extra travel 
time and lower fuel consumption has begun to be discussed in several studies by questionnaires or 
simulation experiments. A survey study showed that participants rated energy savings as the third 
important feature when they decided which route to travel, while travel time ranked first with its 
importance score 16% higher than that of energy savings (Wang et al., 2020). Since the eco route 
recommendation was not available for the most current navigation systems, in this survey study, 
some participants needed to imagine that they were using eco-routing navigation systems. A web-
based experiment was conducted by Aziz and Ukkusuri (2014) to mimic real-world travel 
scenarios. This experiment found that female drivers would trade more additional travel time to 
choose the eco route than male drivers during both work and non-work trips, while drivers from 
higher-income families also showed greater willingness to exchange extra travel time for lower 
emissions due to their generally higher levels of education and awareness of environmental 
problems (Aziz and Ukkusuri, 2014). Another study through a simulation experiment observed 
that when the trip distance was less than 10 miles, with the increase of the trip distance, the eco-
routing would result in more fuel savings but would take longer travel time (Boriboonsomsin et 
al., 2014).

Even if drivers initially choose a route recommended by the navigation system, they may still 
not follow the route while driving. A study reported that 20% of participants did not comply with 
their planned routes, and these route changes took up approximately 44% of the total trip distance 
(Papinski et al., 2009). Participants who had shorter trip lengths were more likely to deviate from 
their planned routes (Papinski et al., 2009). Drivers’ route compliance was modeled by Radial 
basis function networks, where independent variables were socio-economic features, expected 
savings of travel time, and familiarity with road conditions (Dia and Panwai, 2007). Due to this 
black-box model used in this study, the detailed correlation between these input factors and route 
compliance behavior could not be further explained. Real-time information and experience-based 
knowledge may also make drivers divert to an alternative route while driving (Tawfik et al., 2010; 
Abdel-Aty and Abdalla, 2004; Ben-Elia and Shiftan, 2010). However, it is still not clear about 
drivers’ route compliance under the eco-routing condition.

Given the above, eco-routing navigation systems can greatly contribute to the reduction of 
fuel consumption and greenhouse gas emissions, if drivers are willing to choose and comply with 
the eco routes provided by these systems. However, current studies put limited efforts into drivers’ 
route choices and compliance behavior when interacting with eco-routing navigation systems. 
Therefore, there are two main purposes in this study based on naturalistic driving data: one is to 
investigate and predict what kind of route drivers will choose from recommendations offered by 
eco-routing navigation systems; the other is to explore whether and why drivers will follow the 
selected route while driving. Influencing factors on drivers’ route choices and compliance are 
examined from three aspects: driver characteristics, subjective data, and route information. This 
study hypothesizes that fuel-saving benefits will attract drivers to choose and follow the eco route. 
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We expect that this study can help to provide design recommendations to new advanced navigation 
systems so that drivers are willing to use and comply with the eco route choices, which will be 
beneficial to the overall eco-friendliness of the transportation system.

2. Methodology

The methodology section contains four parts: (1) a smartphone-based eco-routing application 
(app) was developed to collect driving and survey data; (2) naturalistic driving experiments were 
designed and conducted; (3) data reduction and mixed model analyses were applied to interpret 
drivers’ route choices and route compliance; (4) the Multi-label random forests algorithm was used 
to predict drivers’ route choice behavior.
2.1 Eco-routing application development
2.1.1 Eco-routing app functionality

The main goal of this turn-by-turn eco-routing navigation app was to collect all the answers 
to the questions of a survey presented at the beginning of the route, the number of detours with all 
the newly created directions, and all the GPS coordinates followed by the driver. This app was 
developed jointly by the Argonne National Laboratory (ANL) and the University of Michigan 
Transportation Research Institute (UMTRI). As shown in Figure 1, this app was able to 
recommend three different routes to drivers with varying the time and the fuel consumption on the 
routes: (1) the eco route: the least energy consumption; (2) the fast route: the shortest travel time; 
(3) the balanced route: a balance between energy consumption and travel time. The app could also 
offer turn-by-turn guidance using the selected route while recording the GPS data gathered along 
the route. The route and navigation services were provided by the MapQuest API (application 
program interface). This API could calculate the route after inputting the desired destination and 
display all the data in the turn-by-turn navigation screen. Trip purpose, drivers’ vehicle model, 
passenger information, and other relevant information were also collected in the survey through 
the app at the beginning of each trip (Figure 2).

Fig. 1. Three different routes provided by the eco-routing navigation app

Data recording was made locally in a database file using SQLite API. In the code of the app, 
there were two different databases, one was called “Trips.db” and the other was “cars.db” (See 
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Figure 2). The “Trips.db” database included all the data for the analysis, such as survey data, trip 
information, driver route decisions, GPS, etc. The “cars.db” file just recorded the different cars 
used in the experiments to introduce corrections in the required fuel estimation made by the app at 
the beginning of the route.

Fig.2. Recording survey data and car types

2.1.2 Fuel consumption estimation
The displayed three recommended routes (eco vs. fast vs. balanced) showed an estimation of 

the fuel consumption that was calculated considering three main effects: the average velocity, the 
traffic, and the car used. Specifically, the effects of the velocity and car used were modeled by 
inputting the MPG (miles per gallon) values in the Urban Dynamometer Driving Schedule (UDDS) 
cycle (average velocity of 21.2 mph) and in the highway cycle (average velocity of 48.3 mph). 
These two values could be easily found on the U.S. EPA (Environmental Protection Agency) 
website for different car models. The U.S. Department of Energy (2020) explained that the 
maximum MPG occurred around 40-50 mph with a low effect of the speed in this area, and when 
the speed was 80 mph there was a reduction of around 35% in the maximum value of the MPG. 
Knowing this and using the two provided values of MPG, the dependency of MPG with the speed 
observed in Figure 3 was calculated. The effect of traffic was estimated using the data provided 
by MapQuest API, since this API was able to classify segments of the route according to the 
different types of traffic, including “FREE_FLOW”, “SLOW”, and “STOP_AND_GO”.

With these three main effects on the MPG, the calculation was made using the following 
procedure after splitting the whole route into different segments according to:
(1) The whole route was split into different segments according to the traffic classification made 
by MapQuest API;
(2) Calculation of the average MPG on each route segment with “FREE_FLOW” traffic was made 
by obtaining the average speed in the segment and using the plot of Figure 3;
(3) The global MPG of the route was estimated by assuming that the vehicle had the value 
calculated before in the “FREE_FLOW” segments of the route, and the city cycle value in the 
“STOP_AND_GO” and “SLOW” segments. The values of all these segments were averaged using 
their distances.
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𝑀𝑃𝐺𝑔𝑙𝑜𝑏𝑎𝑙 =
∑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝐹𝑅𝐸𝐸_𝐹𝐿𝑂𝑊 ∗ 𝑀𝑃𝐺(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑) + ∑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑁𝑂𝑁_𝐹𝑅𝐸𝐸_𝐹𝐿𝑂𝑊 ∗ 𝑀𝑃𝐺_𝑐𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  (1)

Fig.3. The effect of speed on the MPG during a highway driving

2.2 Experiment design and conduction
Forty-three participants with valid driver’s licenses were recruited and participated in the 

study. Each participant received a cell phone handset with the “Eco-Routing” application installed 
for a period of two weeks. During the two weeks, participants were expected to interact with the 
app by completing a route-choice survey and selecting from recommended driving routes prior to 
the beginning of some of their driving trips. Participants were expected to record data for at least 
20 trips and received $100 as their participation compensation. 

All participants reviewed and completed the eco-routing informed consent document before 
they participated in the study. After they signed the consent form, participants were invited to 
come to UMTRI to pick up the eco-routing device and to learn how to operate it. The expectations 
for the interaction process with the eco-routing cell phone application were then explained to the 
participant. Researchers walked through all the procedures with all participants, including setting 
up the application, inputting a trip, choosing a suggested route, and using the navigation function. 

 
2.3 Data reduction

Valid trips were firstly identified as those with completed surveys and GPS data. In addition, 
if the participant did not travel to their inputted destination, the trip data was removed from further 
analysis. The final database contained a total of 737 valid trips from 39 participants, which 
included the responses to the questionnaire for each trip, information about the selected route, and 
the GPS data collected on the device for the specific trips. These 39 participants consisted of 22 
female and 17 male drivers, aged from 20 to 72 years old (Mean=47.3, S.D.=15.3). The detailed 
process of experiments was described as follows:

The eco-routing application on the cell phone was set up by inputting vehicle types and the 
EPA-provided MPG values for both city and highway driving. Before each trip began, the 
interaction with the cell phone application included answering eight questions about the nature of 
the trip and the participant’s trip planning process via a short survey embedded in the application. 
Participants then input their desired destination for their planned trip. Next, the application offered 
them one, two, or three different driving routes to their destination from which to choose. Each 
suggested route was listed with its expected distance, fuel consumption, and time duration. 
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Participants were instructed: “The application will provide you with the distance, time, and 
estimated fuel consumption for up to three routes. Choose the route that is most desirable to you. 
It is likely that one of these routes is the best route for you to take, but you are not required to 
follow them.” After choosing a route, the device provided route guidance to the participant via 
both live turn-by-turn directions on the screen and via verbal directions from the cell phone speaker. 
Maps and navigation used the MapQuest API. 

The number of suggested routes was a function of the complexity of the route. For a very 
short route, there was likely to be only one reasonable route as this would be the quickest 
temporally, the shortest distance-wise, and the most economical for fuel consumption. For more 
complex routes there could be more fundamental differences between route choices, often such as 
whether to take the highway or surface streets, where to get on or off the highway, or sometimes 
two opposing directions around a city area.

Google API was used to correct real driving GPS data from cellphones to produce the real 
route maps, shown in Figure 4 (a). As shown in Figure 4 (b), Ovitalmaps software was used to 
create the trace maps of the selected route from the recommendations of the eco-routing app, by 
stepping through the turn-by-turn directions and placing pins at critical points on a map. Then, 
corrected real driving GPS data were compared with the selected route data to examine drivers’ 
compliance. Any deviation on surface streets or highways from the recommended route would 
result in a trip being scored as “not follow the route”. Slight deviations within parking lots, 
shopping centers, apartment communities, and small, unmarked subdivisions at the beginning and 
end of a trip were outside of the scope of directions and would not result in a route being scored 
“not follow the route”. As illustrated in Figure 4 (c), the overlapping distance (the sector of CD) 
between a real driving trip (the sector of BCD) and a recommended route (the sector of ACD) was 
calculated based on the longitudinal and lateral coordinates. 

(a) Real route recorded by GPS data; (b) Selected route from recommendations; (c) Road overlap 
correction

Fig.4. The real route and selected route Road

2.3 Mixed model analyses
To investigate the impacting factors on the drivers’ eco route choice and route compliance 

behavior, mixed model analyses were used in this study. Mixed models contain both fixed and 
random effects (Wu et al., 2016). In this study, fixed effects were variables from driver 
demographic characteristics, subjective data, and route information, while individual drivers and 
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interactions between individual drivers and any fixed effects were chosen as random effects. 
Compared with those models that assumed the impacting factors on drivers’ route choices and 
route compliance were the same across different observations, mixed models could provide more 
accurate estimations of contributing factors on drivers’ behavior by considering individual 
heterogeneity (Wang et al., 2017; Yu et al., 2019a; Jermakian et al., 2017). 

2.4 Multi-label random forests
Since each route recommended by navigation systems may have several different features at 

the same time, for example, one recommended route is the most fuel-efficient as well as the fast 
one, drivers’ route choices belong to the multi-label problem. Thus, this study employed a Multi-
label random forests (MLRF) method to model drivers’ route choice behavior when interacting 
with eco-routing navigation systems. Different from classical multi-class classification problems, 
where each example can only belong to one single label from a given set of  labels ( ) that 𝑛 𝑛 > 2
were mutually exclusive, the multi-label classification can simultaneously assign each instance 
with  target labels ( ) from all the  given labels (Madjarov et al., 2012). Rational 𝑚 1 ≤ 𝑚 ≤ 𝑛 𝑛
multi-label classification models are capable to take underlying correlations among different labels 
into consideration (Huang and Zhou, 2012). There are several kinds of techniques to deal with 
multi-label problems, including problem transformation, adapted algorithms, and ensemble 
approaches, but many studies have examined that ensemble methods always perform better than 
other state-of-the-art approaches (Zhang et al., 2015; Rokach et al., 2014; Read et al., 2009).

The MLRF method pertains to ensemble learning approaches, which combines a multitude 
of multi-label decision trees (week learners) to achieve more accurate and stable prediction results 
(a strong learner) (Agrawal et al., 2013).  The types of decision trees used in the traditional random 
forests model are typically used for multi-class classification but cannot solve the multi-label 
problems. To extend random forests to be able to perform multi-label classification, multi-label 
decision trees that can generalize the entropy of the sample set to adapt to multi-label data sets, are 
employed to develop the MLRF method (Qu et al., 2017; Clare and King, 2001). Specifically, 
decision trees are constructed top-down, and at each node, data are divided into subsets by finding 
the attribute that leads to the highest information gain. The information gain is calculated by the 
decrease in entropy after partitioning data based on an attribute, as shown in Equation (2):

𝐼𝐺(𝐴,𝑋) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐴) ‒ ∑
𝑥 ∈ 𝑋

|𝐴𝑥|
|𝐴|  𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐴𝑥)   (2)

Where:  is the information gain;  is a set of training data;  is an independent variable; 𝐼𝐺(𝐴,𝑋) 𝐴 𝑋
 is a subset of A when the value of  is equal to .𝐴𝑥 𝑋 𝑥

Entropy is a measure of impurity or disorder. In the traditional decision trees used for multi-
class problems, the computational formula of entropy is as follows:

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐴) =‒
𝑁

∑
𝑖 = 1

𝑝(𝑌𝑖)𝑙𝑜𝑔2𝑝(𝑌𝑖)   (3)

Where:  is the number of the labels of the dependent variable ;   is the probability of label 𝑁 𝑌 𝑝(𝑌𝑖)
 in this set. 𝑌𝑖

Multi-label decision trees extend the Equation (3) to calculate entropy for multi-label data 
sets, as shown in the following Equation (4):

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4046357

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐴) =‒
𝑁

∑
𝑖 = 1

((𝑝(𝑌𝑖)𝑙𝑜𝑔2𝑝(𝑌𝑖) + (1 ‒ 𝑝(𝑌𝑖))𝑙𝑜𝑔2(1 ‒ 𝑝(𝑌𝑖)))   (4)

One of the most important features of the MLRF model is that it can measure the importance 
of each variable (Wu et al., 2019). This model can also quickly and accurately process high-
dimensional data without overfitting problems (Yu et al., 2019b). In addition, since each multi-
label decision tree is built by different bootstrap samples, where approximately one-third of 
original data are left out as “Out of bag” (OOB) at random and are not used to grow this tree, the 
MLRF model is able to provide an internal unbiased estimate of the prediction accuracy (called 
the OOB accuracy) based on these OOB data (Qu et al., 2017). As illustrated in Figure 1, the 
process of the MLRF model consists of four steps: generating bootstrap samples, growing each 
multi-label decision tree, voting for the final results, and calculating the OOB accuracy and 
variable importance.

Tab. 1. The pseudo-code of the MLRF method
Algorithm: Multi-label random forests
Input: Original dataset D with the dimension o |D|=l*m (i.e., l samples and m independent 
variables).
Required parameters: a) Ntree: the number of multi-label decision trees constructed in the model;
                                   b) K: the number of input variables tried at each node to search for the 
best split;
                                   c) M: the maximum depth of the tree;
                                   d) Pin: the minimum number of samples required for splitting at the 
internal node;
                                   e) Pex: the minimum number of samples required for splitting at the 
external node.
For i= 1 to Ntree

1. Generate a bootstrap sample Di with | Di |=|D| by randomly drawing with replacement 
from D, which includes around 2/3 of the observations from D.

2. Grow a multi-label decision tree Ti based on the bootstrap sample Di: (a) randomly try K 
input variables at each node to search for the best split according to the highest IG 
calculated by Equations (2) and (4); (b) When the internal or external node reaches the 
threshold Pin  or Pex, this node will stop splitting; (c) When the depth of each tree reaches 
M, it will stop growing.

End
3.   Vote for the set of labels by combining the results of all multi-label decision trees {T1, T2, …, 

TNtree}.  Then the final set is the one with the majority votes.
4.   Estimate the OOB accuracy by considering the performance of each subset of OOB data in 

the corresponding multi-label tree, and calculate the variable importance based on the mean 
decrease in impurity.

3. Results

3.1 Modelling drivers’ route choices
As mentioned above, drivers’ route choices pertained to the multi-label problem. To mitigate 

the effects of unbalanced sample sizes for different drivers, the average probability of route choices 
was calculated based on each driver, as shown in Figure 5. In general, drivers were more likely to 
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choose the fast route, having the highest average probability of 83.4%, followed by the eco route 
with a selection probability around 78.6%, while the routes with the balanced feature had the least 
likelihood to be selected, averagely 70.7% for each driver. There was a total of 18 variables coded 
for each trip, derived from driver characteristics, subjective data, and route information. After 
eliminating the highly correlated variables, such as gas consumption and driving time of the 
selected route were excluded due to their high correlations with distance, 14 variables were finally 
chosen as the input variables for further analysis. Table 2 demonstrates the detailed descriptions 
and distributions for all these candidate variables.

Fig.5. The average probability of route choices

Tab. 2. Definitions and distributions of input variables
Variables Description (units) Min Max Mean S.D.

Route information
Distance Distance for the selected route (mile) 0.30 132.60 9.34 11.87

Distance saving
Distance differences between the 
longest and the shortest 
recommended routes (mile)

0 13.70 0.82 1.39

Average gas 
consumption

Gas consumption per mile for the 
selected route (gallon per mile) 0.02 0.09 0.04 0.01

Sequence The recommendation sequence for 
different routes

1st (75.88%), 
2nd (19.78%), 
3rd (4.34%).

Number of routes The number of recommended routes
1 (36.45%), 
2 (47.94%), 
3 (15.58%).

Driver characteristics

Age Younger: 20~50, Older:50~75 Younger (48.72%), 
Older (51.28%).

Gender Gender of drivers Male (43.59%), 
Female (56.41%).

Subjective data

Purpose Purpose of this trip

Household errands (5.01%), 
Personal business (9.08%), 
Picking up/dropping off (3.52%), 
Recreation (9.62%), 
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Returning home (29.27%), 
Shopping (11.11%), 
Socialization (6.10%), 
School /work (19.24%), 
Other (7.04%).

Tab. 2. Definitions and distributions of input variables (continued)
Variables Description (units) Min Max Mean S.D.

Decision time When did the driver decide to take 
this trip?

Earlier today (10.43%), 
Several days or longer (8.54%), 
Just now (18.56%), 
Not sure (0.41%), 
Routine (56.37%), 
Yesterday (5.59%).

Household 
passenger

How many household passengers 
were traveling with the driver?

0 (85.09%), 
1 (9.49%), 
2 (3.52%), 
3 or more (1.90%).

Non-household 
passenger

How many non-household 
passengers were traveling with the 
driver?

0 (95.93%), 
1 (3.79%), 
2 (0), 
3 or more (0.27%).

Flexibility How flexible was the driver's arrival 
time at the destination?

Whenever (18.70%), 
Within 15 - 30 mins (4.20%),
Within 5 - 15 mins (9.08%), 
Within 5 mins (68.02%).

Prior activity What activity where the driver 
engaged in prior to this trip?

Household errands (9.89%), 
Personal business (13.41%), 
Picking up/dropping off (2.30%), 
Recreation (9.21%), 
Returning home (6.37%), 
Shopping (10.43%), 
Socialization (6.64%), 
School/work (26.70%), 
Other (15.04%).

Leave earlier Was the driver able to leave earlier 
from the prior activity?

Maybe (9.89%), 
No (23.31%), 
Yes (66.80%).

Figure 6 illustrates the trip purposes of the National household travel survey in 2017 (U.S. 
Department of Transportation Federal Highway Administration, 2020) and our experiment. The 
results showed that our study data were consistent with national household survey data on trip 
purposes, indicating our study data were representative. In both national survey data and this study, 
driving back to home accounted for the largest proportion of trip purposes, and the following was 
driving to work/school. Shopping/errands and social/recreational purposes ranked third and fourth, 
respectively.
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Fig.6. Trip purposes of national household travel survey data and our experiment

To further explore the impacting factors on the eco-routing choice, mixed model analyses 
were conducted in the statistical software package SAS 9.2 by using the PROC GLIMMIX 
procedure. All the input variables and their interactions were chosen as the fixed effects, while 
individual drivers and interactions between individual drivers and these fixed effects were treated 
as random effects. The dependent variable was whether to choose the eco route or not. After 
excluding the insignificant factors, the final model was shown in Table 3. Distance had a negative 
impact on the eco route choice (t(643)=-5.56, p<0.001), while average gas consumption positively 
affected the eco route choice (t(643)=2.35, p=0.019), indicating that drivers were more likely to 
select the eco route when this trip had short distance and higher gas consumption per mile. In 
addition, the route recommendation sequence also had a significant effect on choosing the eco 
route (all p<0.001), and giving priority to recommend the eco route could guide drivers to choose 
the eco way.

Tab. 1 Mixed model results for the eco-routing choice
Effect Estimate Standard error DF t Value Pr>|t|

Intercept 1.139 0.715 38 1.59 0.119
Distance -0.056 0.010 643 -5.56 0.019
Average gas consumption 40.868 17.395 643 2.35 <0.001
Sequence

1st* 0
2nd -1.925 0.316 52 -6.10 <0.001
3rd -2.518 0.491 52 -5.13 <0.001

Note: * denotes reference group for categorical variables; only significant factors were 
demonstrated in this Table 

To predict drivers’ route choice behavior, a Multi-label Random forests (MLRF) 
classification model was established by using the “scikit-learn” package in Python software 
(version 3.6). Those 14 variables mentioned above were selected as the independent variables, 
while the independent variable was what kind of route drivers would choose, which was a multi-
label variable with three candidate features, i.e., eco, fast, and balanced. All 737 samples were 
partitioned randomly into 70% for training and 30% for testing.  After 5- fold cross-validation, the 
parameters in MLRF were determined to make the model reach the stable and maximum accuracy: 
the number of trees was 550; the number of variables considered in each split was 4; the maximum 
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depth of the tree was none; and the minimum number of samples required for splitting at the 
internal and external nodes were 30 and 10, respectively. The final prediction result was shown in 
Table 4.  In the training group, the out-of-bag (OOB) accuracy was 88.3%, and the overall testing 
accuracy was 86.8%. As for the prediction results in each label, their precisions were greater than 
80.0%. For comparison, several other machine learning methods that are commonly used for multi-
label classification were also tried in this study, including Multi-label k-neighbors classifier 
(MLKNC), Multi-label support vector classification (MLSVC); Neural network multi-layer 
perceptron classifier (NNMLPC). For brevity, the introductions of these methods were not 
provided in this paper, and please see “scikit learn” (2020) for more information. The area under 
the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the performance of 
different algorithms, and the ROC curve in the multi-label classification was measured by the 
average value of all labels. As shown in Figure 7, the AUC of the MLRF classification was 0.86 
which was greater than others, indicating that the MLRF classification had a better performance.

Tab.2. Prediction results of the MLRF.
Label Precision Recall f1-score

Eco 0.91 0.91 0.91
Fast 0.87 0.94 0.90
Balanced 0.83 0.89 0.86

Overall accuracy Training (OOB): 0.883; Testing: 0.868
Note: Precision=TP/(TR+FP); Recall=TP/(TP+FN); f1-score=2*(Precision*Recall)/ 
(Precision+Recall)

Fig. 7. ROC curves for multi-label classifiers

Figure 8 illustrates the variable importance that represented the statistical prioritization of 
independent variables regarding their contribution to the prediction model. Variables from route 
information showed the largest impacts on drivers’ route choices, i.e., distance saving, 
recommendation sequence, distance, average gas consumption, and the number of recommended 
routes, ranking the top five of the feature importance. The following were subjective data, such as 
prior activities, the purposes of this trip, decision time, etc. However, no obvious relationships 
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were found in demographic data, indicating that drivers’ route choices were less likely to be 
affected by age and gender differences.

Fig. 8. Variable importance of the MLRF

3.2 Impacting factors on following the recommended route
Generally, the average probability that drivers would actually follow the route after they 

chose from the recommended options was 56.7%, as shown in Figure 9 (a). The detailed results of 
the following probability when they selected different categories of recommended routes were 
illustrated in Figure 9 (b). When drivers chose the eco, they had the largest likelihood (61.6%) to 
follow the route, followed by selecting the fast one with an averaged probability of 61.1%. When 
drivers selected the route with the balanced feature, they were the least likely to comply with their 
option (59.9%).
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(a) The average probability of following the recommended route

(b) The average following probability of each recommended route
Fig. 9. The average probability of drivers’ route compliance

To explore the impacting factors on following the recommended route, mixed model analyses 
were carried out by using the PROC GLIMMIX procedure. In total, 12 candidate variables were 
obtained from three sources:
(1) Route information: eco, fast, and balanced routes;
(2) Driver characteristics: age and gender;
(3) Subjective data: purpose, decision time, household passenger, non-household passenger, 
flexibility, prior activity, and leave earlier.

These variables together with interactions among them were treated as the fixed effects, while 
individual drivers and interactions between individual drivers and fixed effects were regarded as 
random effects. Whether drivers followed the selected route was the independent variable. The 
results were demonstrated in Table 5. When drive chose the eco (t(32)=3.61, p=0.001) or fast  
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(t(31)=4.68, p<0.001) routes, they were more likely to fully drive along the recommended route. 
Additionally, compared with driving alone (t(22)=-2.81, p=0.010) or with only one household 
passenger (t(22)=-2.95, p=0.007), drivers were more willing to comply with the recommended 
route when there were three or more household passengers.

Tab. 3. Mixed model results for the recommended route following
Effect Estimate Standard error DF t Value Pr>|t|

Intercept -1.199 0.257 22 -4.67 <0.001
Eco route 0.776 0.215 32 3.61 0.001
Fast route 1.071 0.229 31 4.68 <0.001
Household member

0 -2.394 0.852 22 -2.81 0.010
1 -2.635 0.893 22 -2.95 0.007
2 -2.003 0.989 22 -2.02 0.055
3 or more* 0

Note: * denotes reference group for categorical variables; only significant factors were 
demonstrated in this Table.

4. Discussion and conclusion

This study aims to understand what factors are influencing drivers’ decision-making on route 
choices and route compliance when interacting with eco-routing navigation systems. Although 
drivers’ route choice and compliance behavior have been discussed in many previous studies, the 
impacts of eco-routing navigation systems have not been considered and examined in these studies. 
Therefore, this study developed an eco-routing navigation app and collected naturalistic driving 
data to explore and model what kind of recommended route drivers would choose and whether 
they would comply with their selected route.

In general, this study found that drivers would change their route choices under certain 
conditions when they were provided with information related to different routes by the eco-routing 
navigation app. With the help of this app, approximately 78.6% of all the selected routes had the 
most energy-saving feature. In contrast, only 54% of the trips based on drivers’ spontaneous 
choices were the eco way without using eco-routing navigation systems (Ericsson et al., 2006). 
Results of the mixed model analyses showed that drivers were more willing to choose the eco route 
when this trip had shorter distances and higher gas consumption per mile. It was also found that 
prioritized recommendations for the eco route could make drivers prefer to choose the eco way. A 
study also reported that the relationship between the fuel saving and trip distance was significantly 
positive when the distance was not greater than 10 miles, while this kind of relationship became 
non-significant with a trip distance longer than 10 miles (Boriboonsomsin et al., 2014). A route 
with a high fuel consumption rate did not necessarily have high totals (Frey et al., 2008) so that 
these two features may have different effects on drivers’ route choice. Age and gender differences 
were found in a route choice study without considering eco-routing systems (Li et al., 2016), and 
a web-based mimic experiment also observed gender differences of the trade-off between energy 
saving and travel time (Aziz and Ukkusuri, 2014). However, using the naturalistic driving data, 
this study did not find any significant effects of age and gender on drivers’ route choices when 
drivers were provided with the eco-routing navigation app.

Since drivers’ route choices belonged to the multi-label problem, this study applied a Multi-
label random forests (MLRF) model to predict which kind of route drivers would choose from the 
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recommendations offered by the eco-routing navigation app. A study has presented that due to 
many different label combinations, the accuracy is a harsher metric in the multi-label classification 
than in the multi-class one, where any possible labels for each sample need to be predicted and 
exactly match with the corresponding set of true labels (Read et al., 2008). In this study, the overall 
OOB accuracy and AUC of this MLRF model were 88.3% and 0.86 respectively, indicating that 
MLRF had a sterling performance in predicting drivers’ route choice behavior. In addition, the 
results showed MLRF also performed better than other commonly-used multi-label classification 
methods.

Overall, the average proportion that participants followed the recommended route while 
driving was 56.7%. Mixed model analyses showed that when drivers chose the eco or fast routes, 
they had a higher probability of compliance with the recommended route. Relative to driving alone 
or with only one household passenger, drivers were more likely to fully drive along the 
recommended route when there were three or more household passengers. This might be because 
driving with three or more passengers makes drivers drive more carefully. It has been reported that 
as for drivers aged 25 to 64 years old, the crash risk when driving alone was about 12 times higher 
than that of having three or more passengers (Engström et al., 2008).

To reduce energy consumption and benefit the eco transportation system, findings in this 
study can help guide drivers to choose and comply with the eco route provided by navigation 
systems, after understanding factors associated with drivers’ decision making. This study also 
contributes to the design of incentive-based programs to motivate eco-routing choices in drivers 
to (1) increase awareness about eco-routing options and consequences, (2) develop sustained 
driving styles in saving energy, and (3) enhance long term effect on public awareness. Fuel 
consumption feedback of eco-routing navigation systems can be designed and improved based on 
this study to reward drivers who follow the eco route in a long run. One limitation of this study is 
that the real-time traffic condition after selecting the route was not included in the analysis of route 
compliance. In the future, real-time information about energy consumption and traffic condition 
changes while driving will be provided in the calculation of the eco-routing option, so that 
corresponding driver behavior can be further analyzed.
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